The trouble with Next Generation Audio is its versatility and the wide array of devices which need to deliver the enhanced immersive experience for the consumer. The Audio Definition Model may hold the key.
We are not done with statistics yet. In a sense we will never be done with it and it is better to know how to deal with it than to ignore it. It is better still to know how others commonly fail to deal with it and reach conclusions that cannot be justified. It is typically very hard to explain to people who do not understand.
Thus far we have looked at transforms from a somewhat abstract viewpoint. In contrast, here we look at an application where transforms take center stage.
It’s quite incredible to think that real time broadcast signal workflows are now actively encouraging software processing. It wasn’t so long ago that video images had to be processed in hardware to meet the tight timing constraints that live video processing demands.
Dealing with brightness in camera systems sounds simple. Increase the light going into the lens; increase the signal level coming out of the camera, and in turn increase the amount of light coming out of the display. In reality, it’s always been more complicated than that. Camera, display and postproduction technologies have been chasing each other for most of the last century, especially since a period in the late 1990s or early 2000s, when electronic cameras started to become good enough for serious single-camera drama work.
Here we look at alternating current (AC) systems and how generating AC often requires an intermediate step of converting to DC to improve the efficiencies of AC generators.
Virtual production based around LED walls involves a disparate collection of technologies, and the people best placed to get the best out of the technology are often multi-disciplinarians with experience across several fields.
Information can never be separated from its nemesis, which is uncertainty. The former is only possible by limiting the latter.