Designing IP Broadcast Systems: Part 2 - IT Philosophies, Cloud Infrastructure, & Addressing

Welcome to the second part of ‘Designing IP Broadcast Systems’ - a major 18 article exploration of the technology needed to create practical IP based broadcast production systems. Part 2 discusses the different philosophies of IT & Broadcast, the advantages and challenges of integrating cloud infrastructure, hybrid systems, and the role of layer 2 & layer 3 packet addressing.

About 'Designing IP Broadcast Systems'

This series builds on the foundations of the huge body of work already published by The Broadcast Bridge on IP. The 18 article collection delves deeper into various aspects of how IP based systems work, with detailed technical explorations of key themes including; design philosophies, discoverability, hybrid systems, remote production, cloud infrastructure and software control layers.

IP for broadcasting is no longer a theoretical concept. It is proving its worth in television stations throughout the world. But transitioning to IP has its challenges, even for those lucky enough to work on greenfield sites. The abstraction of the video and audio essence from the underlying timing plane is presenting many issues whose solutions were often taken for granted in SDI and AES infrastructures, but the learning curve needed to make IP systems work for broadcasting is well worth the investment.

Fundamentally, we’re distributing synchronous video and audio over an asynchronous network, and in doing so, we’re effectively destroying the timing plane. To reconstruct the video and audio signals at the destination we must synthesize a timing system that operates over an asynchronous packet switched network. Switch buffers with indeterminate latencies conspire against this goal so packet jitter and loss become something we have to work with.

To achieve the promise of scalability, flexibility, and resilience, a change in mindset is required as broadcast engineers expect video and audio signals to be delivered with near perfection, but IT engineers and the vendors who manufacture routing and switching equipment assume there will be some packet loss due to the dynamic nature of IP networks. Once this has been accepted, then designing IP broadcast systems becomes more achievable.

Designing IP Broadcast Systems picks up the story where ' Understanding IP Broadcast Production Networks- The Book' left it, and assumes the reader has read this earlier work.  

Designing IP Broadcast systems will publish in four parts. Details of all four parts can be found HERE.


About Part 2. IT Philosophies, Integrating Cloud Infrastructure, Addressing & Packet Delivery

Part 2 is a free PDF download containing 4 articles:

Article 1 : Where Broadcast Meets IT
Broadcast and IT engineers have historically approached their professions from two different places, but as technology is more reliable, they are moving closer.

Article 2 : Integrating Cloud Infrastructure
Connecting on-prem broadcast infrastructures to the public cloud leads to a hybrid system which requires reliable secure high value media exchange and delivery..

Article 3 : With ST2110, You’ve Got The Power
Our partner Lawo discuss how a hybrid infrastructure that combines SDI and server based processing technologies, connected by an ST 2110 IP core offers the best of all worlds.

Article 4 : Addressing & Packet Delivery
Layer-3 and layer-2 addresses work together to deliver data link layer packets and frames across networks to improve efficiency and reduce congestion.

Part of a series supported by

You might also like...

Audio For Broadcast: Cloud Based Audio

With several industry leading audio vendors demonstrating milestone product releases based on new technology at the 2024 NAB Show, the evolution of cloud-based audio took a significant step forward. In light of these developments the article below replaces previously published content…

Why Live Music Broadcast Needs A Specialized Music Truck

We talk to the multi-award winning team at Music Mix Mobile about the unique cultural and creative demands of mixing music live for broadcast.

Future Technologies: Private 5G Vs Managed RF

We continue our series considering technologies of the near future and how they might transform how we think about broadcast, with whether building your own private 5G network could be an excellent replacement for managed RF.

An Introduction To Network Observability

The more complex and intricate IP networks and cloud infrastructures become, the greater the potential for unwelcome dynamics in the system, and the greater the need for rich, reliable, real-time data about performance and error rates.

Essential Guide: Location Sound Recording

This Essential Guide examines the delicate and diverse art of capturing audio on location, across a range of different types of film and television production. A group of seasoned professionals discuss their art and the how it can dramatically elevate…