Hiltron Introduces High-Accuracy 3D Laser Scanning Service For Teleport Antennas

Hiltron Communications is introducing a service allowing 3D laser scanning and evaluation of teleport antennas. Based on technology developed by Hiltron’s subsidiary partner, ESA Microwave GmbH, this new resource allows reflectors of practically any size to be measured quickly and accurately.

“Satellite teleports have massively expanded in number since the mid 1980s,” says Hiltron sales manager Jean-Luc George van Eeckhoutte. “Many reflectors currently in use date back to those early years and are now performing with reduced efficiency. This new service allows reflectors to be checked in very high resolution as part of a complete performance evaluation. The 3D laser scanning technique we use is far more accurate than the commonly used photogrammetry technique and can be performed while the antenna is actually in operation. It is also much more efficient than photogrammetry which requires manual attachment of measurement targets to the reflector, a time-consuming process and one which results in only a few hundred points being measured."

Hiltron's 3D laser scanning service allows a million surface reference points per second to be captured with a geometric accuracy of less than 1 mm. The resultant information is integrated into a cloud of approximately 60 million points which is then used to create a computer-aided design model.”

After digitisation and computation of the reflector and sub-reflector topography, the ingested data are used to calculate alignment, registration and any required fine-tuning such as surface restoration. Measured specifications and related performance parameters are delivered to the antenna operator or owner together with recommendations clarifying whether the antenna would benefit from upgrading, conversion or fitting with a multi-band feed system.

The 3D laser scanning service is available to new and existing Hiltron customers for any brand and model of satellite antenna up to 35 metres in diameter.

You might also like...

Next-Gen 5G Contribution: Part 2 - MEC & The Disruptive Potential Of 5G

The migration of the core network functionality of 5G to virtualized or cloud-native infrastructure opens up new capabilities like MEC which have the potential to disrupt current approaches to remote production contribution networks.

Standards: Part 8 - Standards For Designing & Building DAM Workflows

This article is all about content/asset management systems and their workflow. Most broadcasters will invest in a proprietary vendor solution. This article is designed to foster a better understanding of how such systems work, and offers some alternate thinking…

Designing IP Broadcast Systems: Addressing & Packet Delivery

How layer-3 and layer-2 addresses work together to deliver data link layer packets and frames across networks to improve efficiency and reduce congestion.

The Business Cost Of Poor Streaming Quality

Poor quality streaming loses viewers at an alarming rate especially when we consider the unintended consequences of poor error reporting on streaming players.

Future Technologies: Asynchronous Transport

In this first in a series of articles considering technologies of the near future and how they might transform how we think about broadcast, we begin with the potential for asynchronous transport streams.