In principle, IP systems for broadcasting should not differ from those for IT. However, as we have seen in the previous nineteen articles in this series, reliably distributing video and audio is highly reliant on accurate timing. In this article, we investigate the key components needed to build a reliable broadcast IP infrastructure.
As broadcasters accelerate IP migration we must move from a position of theory to that of practical application. Whether we’re building a greenfield site or transitioning through a hybrid solution, simply changing SDI components with analogous IP replacements will not achieve full COT’s goals and the benefits associated with it.
Moving from the luxury of dedicated point-to-point connectivity in favor of asynchronous, shared, and unpredictable IP networks may seem like we’re making life unnecessarily difficult for ourselves. However, there are compelling reasons to make the transition to IP. In this article, we look at the primary motivation for moving to IP and the benefits it provides for broadcasters.
The SMPTE (Society of Motion Picture and Television Engineers) has responded to demand for faster development of key standards aligned with emerging business processes by establishing its Technical Specification process.
Audio can be edited these days on virtually any personal computer. Professionals, however, need to understand storage drives in order to get the best results. Here’s what to look for when buying drives for audio editing.
Low latency networks and non-blocking switches are terms now appearing in mainstream broadcasting. But what do they mean? Why are they relevant? And how do we make Video over IP work?
Everyone knows what standards converters do, right? Broadcast professionals recognize that changing the video format and frame rate is necessary when sharing materials internationally or when integrating movies into TV schedules. In fact, there are many types of standards conversion available. Here is a guide to understanding the options.
It is time to implement IP based bidirectional and multi-user radio systems in the licensed BAS band channels. The resulting improvements in data rates and new technology can enable workflows in the field much like those enjoyed in the studio. However, careful management of data rates, traffic priorities and security are required to ensure high quality signals are delivered back to the studio.