A Practical Guide To RF In Broadcast: Part 4 - Codecs, Facilities & The Future
This is the fourth of a multi-part series exploring the science and practical applications of RF technology in broadcast. Here we discuss codecs & encoding, the need to carefully manage the proliferation of RF devices within facilities and the future of OTA TV.
About 'A Practical Guide To RF In Broadcast'
A Practical Guide To RF In Broadcast is a Themed Content Collection that features a series of twelve articles and provides an extensive technical guide to RF technology within broadcast. It is a major work that will serve as a reference resource for professional broadcast engineers
Broadcasting has encountered more technology change over the past thirty years than many of us care to think about. Analog has changed to digital delivery, SD has changed to HD and 4K, and sound is transitioning to deliver higher levels of immersive experience through object and surround sound. But the one consistent technology that has stood the test of time is RF.
RF differs from most other broadcast technology as it’s fundamentally analog. As the laws of physics haven’t changed in the past hundred years, then the underlying rules that govern all RF systems haven’t changed either. But what has changed is how we use RF in the context of modern broadcasting along with our understanding of how waves propagate through the universe.
Broadcasting has always driven technology to its limits, and this is certainly the case with RF. Morse devised the first channel coding system ninety years before Shannon formalized his achievements through information theory. And this in turn led to the development of the highly efficient coding systems that we use in modern broadcasting such as CODFM and 5G-NS.
Our RF understanding is sure to improve for as long as users continue to use mobile devices.
A Practical Guide To RF In Broadcast is a collection of twelve articles presented in four parts.
Each part tackles a different theme and there are three or more articles per part.
Details of all four parts can be found
HERE.
About Part 4. Codecs, Facilities & The Future
Part 4 is a free PDF download which contains three articles:
Article 1 : Codecs & Encoding
Here we look at codecs and encoding for digital RF modulation such as ATSC 3.0, DVB and other digital OTA standards, and Network requirements for encoding and delivering streaming internet video.
Article 2 : Other Radios In TV Stations
Why keeping control of wi-fi and other devices within a broadcast facility to ensure there is no interference with critical devices is essential.
Article 3 : The Future Of OTA TV In The USA
History is usually written by the victors, but at the moment it is far from clear exactly who the winners will be with OTA TV in the US over the next few years.
You might also like...
Brazil Adopts ATSC 3.0 For NextGen TV Physical Layer
The decision by Brazil’s SBTVD Forum to recommend ATSC 3.0 as the physical layer of its TV 3.0 standard after field testing is a particular blow to Japan’s ISDB-T, because that was the incumbent digital terrestrial platform in the country. C…
Broadcasting Innovations At Paris 2024 Olympic Games
France Télévisions was the standout video service performer at the 2024 Paris Summer Olympics, with a collection of technical deployments that secured the EBU’s Excellence in Media Award for innovations enabled by application of cloud-based IP production.
Standards: Part 18 - High Efficiency And Other Advanced Audio Codecs
Our series on Standards moves on to discussion of advancements in AAC coding, alternative coders for special case scenarios, and their management within a consistent framework.
HDR & WCG For Broadcast - Expanding Acquisition Capabilities With HDR & WCG
HDR & WCG do present new requirements for vision engineers, but the fundamental principles described here remain familiar and easily manageable.
What Does Hybrid Really Mean?
In this article we discuss the philosophy of hybrid systems, where assets, software and compute resource are located across on-prem, cloud and hybrid infrastructure.