The Difference Between Multimode and Single-Mode Fiber Optic Cables

Fiber optics is a communications medium that sends optical signals down hair-thin strands of pure glass cores. The light “pipe” is surrounded by cladding that traps the light in the core. The key difference between multimode and single mode fiber optic cable is the size of the core.

According to Camplex, a fiber optic solutions provider based in Saugerties, New York, fiber types are identified by the diameters of the core and cladding. These are expressed in microns. Multimode fiber is available in two sizes — 62.5 or 50 microns — and four classifications: OM1 (62.5/125 µm), OM2, OM3, OM4 (50/125 µm).

The diameter of a single mode core fiber cable, however, is nine microns. Both fiber types have a cladding diameter of 125 µm or microns.

In multimode fiber, light travels through through the large core in many rays. These are called modes. Due to refraction, the rays are reflected from the cladding surface back into the core as they move through the fiber.

Single mode fiber, on the other hand, has a much smaller core which forces the light to travel in one ray or mode (a single mode). There is little light reflection so the signal will travel further.

The user’s application requirements determine which mode is used. Single mode is typically used by outside broadcast vehicles, ENG crews, sports, live events and long haul networks. Multimode is often used by MADI digital audio, security systems, data centers, CCTV and Ethernet protocols.

The benefits of single mode fiber is lower signal loss, high signal quality and high bandwidth, while multimode fiber is less immune to contamination, less expensive and lower cost

You might also like...

The Big Guide To OTT: Part 10 - Monetization & ROI

Part 10 of The Big Guide To OTT features four articles which tackle the key topic of how to monetize OTT content. The articles discuss addressable advertising, (re)bundling, sports fan engagement and content piracy.

Next-Gen 5G Contribution: Part 2 - MEC & The Disruptive Potential Of 5G

The migration of the core network functionality of 5G to virtualized or cloud-native infrastructure opens up new capabilities like MEC which have the potential to disrupt current approaches to remote production contribution networks.

Standards: Part 8 - Standards For Designing & Building DAM Workflows

This article is all about content/asset management systems and their workflow. Most broadcasters will invest in a proprietary vendor solution. This article is designed to foster a better understanding of how such systems work, and offers some alternate thinking…

Designing IP Broadcast Systems: Addressing & Packet Delivery

How layer-3 and layer-2 addresses work together to deliver data link layer packets and frames across networks to improve efficiency and reduce congestion.

The Business Cost Of Poor Streaming Quality

Poor quality streaming loses viewers at an alarming rate especially when we consider the unintended consequences of poor error reporting on streaming players.