IBC2018 Show Event Channel

Everything you need to know for the show and exhibitors.

Click here

Broadcast For IT - Part 4 - NTSC Line and Frame Relationships

In this series of articles, we will explain broadcasting for IT engineers. Television is an illusion, there are no moving pictures and todays broadcast formats are heavily dependent on decisions engineers made in the 1930’s and 1940’s. In this article we look at how American NTSC video lines and frames relate to each other, and the consequence for their digital derivatives prevalent throughout the world.

The National Television System Committee (NTSC) was the governing body committed to developing North American broadcast standards. In 1941 they provided the first black-and-white standard and then the second standard in 1953 for color television.

Two Fields One Frame

As described in previous articles, video pictures are made from individual frames, and each frame is made up of many lines. Prior to digital displays, cathode ray tubes (CRT’s) consisted of a stream of electron beams fired towards the front of the screen energizing phosphors to provide brightness. Electromagnetic coils around the CRT deflected the beam so it traced a raster of lines across and down the screen.

One complete vertical and horizontal scan resulted in one frame. When interlace was introduced, each frame was split into two fields. Field-one traced out the odd lines – 1,3,5 etc., and field-two traced out the even lines – 2,4,6 etc. Field-one would be scanned first followed by field-two. Combined, they would form one frame.

Not All Lines Displayed

Broadcasting black-and-white pictures was a straightforward process with 30 frames per second being displayed, and each frame consisting of 525 lines. However, not all the lines are displayed as some were used for frame-flyback, that is the time taken for the electron beam to trace from the bottom of the screen back to the top, a process taking a finite amount of time.

As CRT’s and scan coils were reliant on analog electronics there was some margin of error in representing the image. The size, and where the image appeared on the screen would vary between television manufacturers and individual sets. To help counteract this, overscan was adopted - the picture is slightly bigger than the screen resulting in some cropping of the top and bottom, and left and right sides.

SD is 480i

Flyback-time and overscan further reduces the number of lines displayed, and NTSC television sets produced only 480 visible lines of a total 525. Hence the reason modern standard definition American digital standard definition formats are referred to as 480i, the “i” indicating interlace, even though they are based on 525-line systems.

Although 525 lines are defined, only 480 lines are displayed in NTSC broadcasts and derived systems.

Although 525 lines are defined, only 480 lines are displayed in NTSC broadcasts and derived systems.

Backwards compatibility is both a major benefit and Achilles Heal of the broadcast industry. Prior to the digital revolution, television sets, with their heavy glass CRT’s were expensive and in the early days temperamental and unreliable.

Maintain Backwards Compatibility

When color standards were being designed, a prerequisite was that color broadcasts must be backwards compatible with existing black-and-white sets. Color information must be combined with black-and-white signals in such a way that both existing black-and-white sets and color sets could decode and show the same broadcast, this was far preferable to transmitting separate color and black-and-white broadcasts.

Output of a color camera is split into two parts, chroma and luma, derived from their red, green and blue sensors. Chroma is the color part of the signal and luma the black-and-white. Chroma was modulated onto the luma in such a way that black-and-white TV’s could ignore it, and color TV’s decode and use it. Exactly how this works is the subject of a later article, however, the color was modulated onto a carrier called the color sub-carrier (CSC).

Stable Pictures Demanded

Maintaining a mathematical relationship between lines and fields is key to broadcasting stable pictures, electronic design becomes easier and consequently cheaper - a major consideration for domestic television manufacturers.

In the black-and-white NTSC system 30 frames consists of 2 fields, and each field consists of 262.5 lines. This relationship could be easily established using a single master oscillator and phased locked loops to derive the line and field rates.

To maintain stability and simplicity of design, the CSC needed to be related to line and field frequencies. Using 30 frames per second allowed for a CSC frequency of 3.898125MHz, this is related to line rate from the ratio (495/2)*15.750KHz. However, when testing using this CSC frequency, engineers found a visual interference and flickering occurred on black-and-white TV’s, caused by sub-harmonics created by the interaction and modulation between the transmission audio carrier and CSC frequency.

Reduce CSC

Further testing demonstrated that by reducing the frequency of the CSC, the flickering disappeared.

Consequently, CSC was reduced by approximately 8% to a ratio of 315MHz/88 = 3.579545455MHz. To derive the line-frequency a ratio of (315MHz/35)/572 was used to give 15.73426573KHz. And to derive the frame rate, the line frequency is divided by 525 to give 29.97002997 frames per second, or 59.94005994 fields per second.

NTSC line, field and CSC frequencies can be derived from other oscillators such as 27MHz.

NTSC line, field and CSC frequencies can be derived from other oscillators such as 27MHz.

A more convenient way of expressing the field and frame rate is the ratio 60/1.001 and 30/1.001.

Digital Uses 59.94 Fields

Frame and field rates of 60/1.001 and 30/1.001 are still used extensively throughout the USA and rest of the world where broadcast systems are based on NTSC, and in digital systems that are backwards compatible with it. Even modern digital formats use these rates.

More often you will see an American format referred to as 59.94i.

Field rates of 59.94i are incredibly difficult to work with, they don’t easily convert to European rates of 50 fields per second as there is no common integer, and counting frames in seconds is even more challenging as there is not an integer number of frames in a minute.

Incompatible Frame Rates Cause Disturbance

Modern digital transcoders, standards converters and camera’s often have a setting for 60 fields a second, which is not 59.94 fields per second. Trying to convert between the two will result in jittery, difficult to watch pictures with random frame loss and disturbance.

Great care must be taken when configuring systems that operate with 59.94i otherwise picture disturbance will be abundant. In the next article we will look at time representation in 59.94i.

Let us know what you think…

Log-in or Register for free to post comments…

You might also like...

Essential Guide:  Video Over IP - Making It Work

Low latency networks and non-blocking switches are terms now appearing in mainstream broadcasting. But what do they mean? Why are they relevant? And how do we make Video over IP work?

Articles You May Have Missed – August 15, 2018

The standards for moving video over IP are all decided, right? Not yet. Even so, the innovation presents unprecedented opportunities and empowers broadcasters to deliver flexibility, scalability, and more efficient workflows. Consultant and The Broadcast Bridge technology editor, Tony Orme,…

Extending The Studio Network To The Field

It is time to implement IP based bidirectional and multi-user radio systems in the licensed BAS band channels. The resulting improvements in data rates and new technology can enable workflows in the field much like those enjoyed in the studio.…

Broadcast For IT - Part 18 - Quality Control

Quality Control is one of the many areas where IT and broadcast use similar terms, but the meaning is quite different. Whereas IT focuses on guaranteeing bit rates and packet delivery to improve quality of service and hence quality of…

What is NMOS?

Many engineers believed that the release of SMPTE2110 was sufficient to ensure compatibility for all the gear in a media IP-centric environment. Not so, the standard defines the transport layer only. Complying with ST2110 will only guarantee a signal will…