LYNX Technik Launches Redesigned yellobrik Ethernet To Fiber Switches

LYNX Technik, provider of modular signal processing solutions, announces redesigning three of its yellobrik Ethernet to Fiber Transceivers (Switches). The new updates also include several feature enhancements.

They can be used in broadcast, professional AV, and video production environments where long-distance signal transmission requires minimal signal degradation. By using the LYNX Technik yellobrik Ethernet | Fiber transceivers and switches, facilities can take advantage of fiber optic cabling to extend the reach of 1Git/s electrical ethernet signals over a greater distance. Some models extend up to 80 Km / 49.7 miles using SFPs. These converters enable the connection of copper-based ethernet equipment to single—and multi-mode fiber optic cable, all while offering a stable and high-speed signal connection between locations.

These yellobriks provide various connectivity solutions where cabling may be challenging or long-distance signal distribution is required. The OET 1514 and OET 1544 (CWDM) can also function as a three-port ethernet switch with one fiber and two electrical ethernet ports. The OBD 1514-E is a matched pair of bi-directional switches and can function as a four-port ethernet switch.

German-designed and built LYNX Technik products are known for their reliability and performance in demanding broadcast and professional AV applications. Yellobrik products are known for their compact size, making them suitable for space-constrained environments or portable setups. They are hot-swappable and hot-pluggable, user-friendly, and have all the instructions and indicators printed directly on the units themselves. Their ease of use facilitates easy setup and quick troubleshooting.

Via the LynxCentraal software application, additional monitoring features, including SNMP support and enhanced monitoring capabilities such as link speed, are available. In the case of port-down events, when a network port or network device renders non-operational, the software triggers alerts about system warnings, such as temperature monitoring. 

You might also like...

Standards: Part 11 - Streaming Video & Audio Over IP Networks

Streaming services deliver content to the end-users via an IP network connection. The transport process is similar to broadcasting and shares some of the same technologies but there are some unique caveats.

Designing IP Broadcast Systems: Routing

IP networks are wonderfully flexible, but this flexibility can be the cause of much frustration, especially when broadcasters must decide on a network topology.

Audio For Broadcast: Cloud Based Audio

With several industry leading audio vendors demonstrating milestone product releases based on new technology at the 2024 NAB Show, the evolution of cloud-based audio took a significant step forward. In light of these developments the article below replaces previously published content…

Future Technologies: New Hardware Paradigms

As we continue our series of articles considering technologies of the near future and how they might transform how we think about broadcast, we consider the potential processing paradigm shift offered by GPU based processing.

Standards: Part 10 - Embedding And Multiplexing Streams

Audio visual content is constructed with several different media types. Simplest of all would be a single video and audio stream synchronized together. Additional complexity is commonplace. This requires careful synchronization with accurate timing control.