Calrec Unveils New ImPulse1 IP Engine

Calrec makes switching to ST2110 more affordable with the introduction of new ImPulse1 IP engine.

Following on from its new Argo audio mixing control platform launched at IBC 2022, Calrec announces its new ImPulse1 IP audio processing and routing engine — a smaller, yet powerful cost-effective ST2110 version of the industry-established ImPulse. ImPulse1 is a compact 1U solution with an optional second core for redundancy and a new 128 input channel DSP pack offering entry-level pricing.

The industry has seen a significant uptake in IP, but not without cost constraints. The introduction of ImPulse1 is making the move to IP much more attainable, offering a range of options to suit all budget requirements. ImPulse1 works with Argo Q and Argo S control surfaces, and/or Calrec Assist, a browser-based GUI, ideally suited to remote working, multi operator and/or headless operation. Cores with smaller DSP licenses can be offered without hardware redundancy.

ImPulse1 is designed for small to medium single mixer applications and is offered with an all-new DSP license of 128 input channels without compromising its ST2110 capability. With a small overall form-factor, it’s immediately attractive for compact installation sites, such as outside broadcast and fly pack applications, where space is at a premium. Furthermore, it doesn’t compromise on features and DSP power; it has DSP options ranging from 128 to 384 input channels and benefits from the DSP features from the larger ImPulse core.

ImPulse1 features include a fully self-contained DSP core as well as dual AC PSUs. Twin core hardware redundancy or optional single core systems are available with ST2022-7 as standard. Other main ImPulse1 features include:

  • Up to 672 processing paths
  • Native AES67 / SMPTE ST2110-30 connectivity
  • ST2110-30 connections can operate in 1 or 10Gbps mode
  • Built-in support for NMOS IS-04 advertisements & IS-05 connection managements
  • Max router capacity of 2,048 x 2,048
  • Up to 512 ST2110 streams - each stream can pass between 1 to 80 audio channels
  • Surface connectivity is via IP, so surfaces can be physically remote, connected over COTS networks and supplemented with Assist web UI for multi operator, remote or headless use.

You might also like...

Standards: Part 9 - Standards For On-air Broadcasting & Streaming Services

Traditional on-air broadcasters and streaming service providers use many of the same standards to define how content is received from external providers and how it is subsequently delivered to the consumer. They may apply those standards in slightly different ways.

An Introduction To Network Observability

The more complex and intricate IP networks and cloud infrastructures become, the greater the potential for unwelcome dynamics in the system, and the greater the need for rich, reliable, real-time data about performance and error rates.

Designing IP Broadcast Systems: Part 3 - Designing For Everyday Operation

Welcome to the third part of ‘Designing IP Broadcast Systems’ - a major 18 article exploration of the technology needed to create practical IP based broadcast production systems. Part 3 discusses some of the key challenges of designing network systems to support eve…

What Are The Long-Term Implications Of AI For Broadcast?

We’ve all witnessed its phenomenal growth recently. The question is: how do we manage the process of adopting and adjusting to AI in the broadcasting industry? This article is more about our approach than specific examples of AI integration;…

Next-Gen 5G Contribution: Part 2 - MEC & The Disruptive Potential Of 5G

The migration of the core network functionality of 5G to virtualized or cloud-native infrastructure opens up new capabilities like MEC which have the potential to disrupt current approaches to remote production contribution networks.