Calrec Unveils New ImPulse1 IP Engine

Calrec makes switching to ST2110 more affordable with the introduction of new ImPulse1 IP engine.

Following on from its new Argo audio mixing control platform launched at IBC 2022, Calrec announces its new ImPulse1 IP audio processing and routing engine — a smaller, yet powerful cost-effective ST2110 version of the industry-established ImPulse. ImPulse1 is a compact 1U solution with an optional second core for redundancy and a new 128 input channel DSP pack offering entry-level pricing.

The industry has seen a significant uptake in IP, but not without cost constraints. The introduction of ImPulse1 is making the move to IP much more attainable, offering a range of options to suit all budget requirements. ImPulse1 works with Argo Q and Argo S control surfaces, and/or Calrec Assist, a browser-based GUI, ideally suited to remote working, multi operator and/or headless operation. Cores with smaller DSP licenses can be offered without hardware redundancy.

ImPulse1 is designed for small to medium single mixer applications and is offered with an all-new DSP license of 128 input channels without compromising its ST2110 capability. With a small overall form-factor, it’s immediately attractive for compact installation sites, such as outside broadcast and fly pack applications, where space is at a premium. Furthermore, it doesn’t compromise on features and DSP power; it has DSP options ranging from 128 to 384 input channels and benefits from the DSP features from the larger ImPulse core.

ImPulse1 features include a fully self-contained DSP core as well as dual AC PSUs. Twin core hardware redundancy or optional single core systems are available with ST2022-7 as standard. Other main ImPulse1 features include:

  • Up to 672 processing paths
  • Native AES67 / SMPTE ST2110-30 connectivity
  • ST2110-30 connections can operate in 1 or 10Gbps mode
  • Built-in support for NMOS IS-04 advertisements & IS-05 connection managements
  • Max router capacity of 2,048 x 2,048
  • Up to 512 ST2110 streams - each stream can pass between 1 to 80 audio channels
  • Surface connectivity is via IP, so surfaces can be physically remote, connected over COTS networks and supplemented with Assist web UI for multi operator, remote or headless use.

You might also like...

Essential Guide: Delivering Intelligent Multicast Networks

This Essential Guide discusses the potential weaknesses of the ‘Protocol-Independent Multicast’ protocols that underpin multicast, and explores how a bandwidth aware infrastructure can maximize network capacity to reduce the risk of congestion.

Standards: Part 16 - About MP3 Audio Coding & ID3 Metadata

The MP3 audio format has been around for thirty years and has been superseded by several other codecs – so here we discuss why it still has a very strong position in broadcast. We also discuss ID3 metadata tags which often a…

HDR Picture Fundamentals: Brightness

This article describes one of the fundamental principles of broadcast - how humans perceive light, how this relates to the technology we use to capture and display images, and how this relates to HDR & Wide Color Gamut

Virtualization - Part 2

In part one, we saw how virtualization is nothing new and that we rely on it to understand and interact with the world. In this second part, we will see how new developments like the cloud and Video Over IP…

Standards: Part 15 - ST2110-2x - Video Coding Standards For Video Transport

SMPTE 2110 and its related standards help to construct workflows and broadcast systems. They coexist with standards from other organizations and incorporate them where necessary. In an earlier article we looked at the ST 2110 standard as a whole. This time we…