Research Leading To The Elimination Of Heavy Metals in Batteries

IBM Research has made a discovery that could help eliminate the need for heavy metals in battery production. This would aid environmental protection and eventually transform the long-term sustainability of portable energy production.

Batteries are essential in both portable video and audio production, as well as in portable computers, mobile phones and electric vehicles. Many battery materials, however, include heavy metals such as nickel and cobalt and pose significant environmental and humanitarian risks. Cobalt in particular, which is largely available in central Africa, has come under fire for careless and exploitative extraction practices.

Using three new and different proprietary materials, which have never before been combined in a battery, IBM Research’s Battery Lab reports that it has discovered a chemistry for a new battery which does not use heavy metals or other substances with sourcing concerns.

IBM Researcher.

IBM Researcher.

The materials for this battery are able to be extracted from seawater, laying the groundwork for less invasive sourcing techniques than current material mining methods.

In initial tests, the new technology proved it can be optimized to surpass the capabilities of lithium-ion batteries. This means lower costs, faster charging time, higher power and energy density, strong energy efficiency and low flammability.

This design uses a cobalt and nickel-free cathode material, as well as a safe liquid electrolyte with a high flash point. The combination of the cathode and electrolyte demonstrated an ability to suppress lithium metal dendrites during charging, thus reducing flammability. This is widely considered a significant drawback for the use of lithium metal as an anode material.

Current tests show that less than five minutes are required for the battery – configured for high power – to reach an 80 percent state of charge. Combined with the relatively low cost of sourcing the materials, the goal of a fast-charging, low-cost batteries could become a reality.

A Differential Electrochemical Mass Spectroscopy (DEMS) System, which measures the amount of gas that has evolved from a battery cell during charging and discharging cycles

A Differential Electrochemical Mass Spectroscopy (DEMS) System, which measures the amount of gas that has evolved from a battery cell during charging and discharging cycles

When optimized for this factor, this new battery design has a long life cycle and outperforms the most powerful lithium-ion batteries available. The active cathode materials tend to cost less because they are free of cobalt, nickel and other heavy metals. It takes less than five minutes to reach an 80 percent state of charge, without compromising specific discharge capacity.

To move this new battery from early stage exploratory research into commercial development, IBM Research has joined with Mercedes-Benz Research and Development North America, Central Glass, a major battery electrolyte supplier, and Sidus, a battery manufacturer, to create a new next-generation battery development ecosystem.

Moving forward, the IBM team has also implemented an artificial intelligence (AI) technique called semantic enrichment to further improve battery performance by identifying safer and higher performance materials. Using machine learning techniques, it offers human researchers access to insights from millions of data points. 

You might also like...

U.S. Transportation Agencies Ban Lithium-Ion Batteries from Cargo on Passenger Aircraft

The U.S. Department of Transportation (DOT) and Federal Aviation Administration (FAA) have announced a new Interim Final Rule banning the transportation of lithium-ion batteries in passenger aircraft cargo.

Video Batteries - Keys to Top Performance

As any photographer or camera assistant will confess, a dead or dying battery during production quickly becomes a crisis. To avoid the predicament and maintain top performance from your kit of batteries here are some tips.

Applied Technology: Powering and Charging Today’s Production Equipment

For the remote powering of cameras, lights and other production peripherals the key challenge has always been the need for ever-faster battery charging times.

Batteries, the Bane of Every Video Crew, Get Ready for a Reboot

A major new development in battery technology promises to store more energy and allow thousands more recharges than with today’s cells.

Lithium-Ion Batteries, a Staple for Broadcasting, Wins the Nobel Prize in Chemistry 

John B. Goodenough, M. Stanley Whittingham and Akira Yoshino were jointly awarded the Nobel Prize in Chemistry for their development of lightweight lithium-ion batteries, the Royal Swedish Academy of Sciences has announced.