Research Leading To The Elimination Of Heavy Metals in Batteries

IBM Research has made a discovery that could help eliminate the need for heavy metals in battery production. This would aid environmental protection and eventually transform the long-term sustainability of portable energy production.

Batteries are essential in both portable video and audio production, as well as in portable computers, mobile phones and electric vehicles. Many battery materials, however, include heavy metals such as nickel and cobalt and pose significant environmental and humanitarian risks. Cobalt in particular, which is largely available in central Africa, has come under fire for careless and exploitative extraction practices.

Using three new and different proprietary materials, which have never before been combined in a battery, IBM Research’s Battery Lab reports that it has discovered a chemistry for a new battery which does not use heavy metals or other substances with sourcing concerns.

IBM Researcher.

IBM Researcher.

The materials for this battery are able to be extracted from seawater, laying the groundwork for less invasive sourcing techniques than current material mining methods.

In initial tests, the new technology proved it can be optimized to surpass the capabilities of lithium-ion batteries. This means lower costs, faster charging time, higher power and energy density, strong energy efficiency and low flammability.

This design uses a cobalt and nickel-free cathode material, as well as a safe liquid electrolyte with a high flash point. The combination of the cathode and electrolyte demonstrated an ability to suppress lithium metal dendrites during charging, thus reducing flammability. This is widely considered a significant drawback for the use of lithium metal as an anode material.

Current tests show that less than five minutes are required for the battery – configured for high power – to reach an 80 percent state of charge. Combined with the relatively low cost of sourcing the materials, the goal of a fast-charging, low-cost batteries could become a reality.

A Differential Electrochemical Mass Spectroscopy (DEMS) System, which measures the amount of gas that has evolved from a battery cell during charging and discharging cycles

A Differential Electrochemical Mass Spectroscopy (DEMS) System, which measures the amount of gas that has evolved from a battery cell during charging and discharging cycles

When optimized for this factor, this new battery design has a long life cycle and outperforms the most powerful lithium-ion batteries available. The active cathode materials tend to cost less because they are free of cobalt, nickel and other heavy metals. It takes less than five minutes to reach an 80 percent state of charge, without compromising specific discharge capacity.

To move this new battery from early stage exploratory research into commercial development, IBM Research has joined with Mercedes-Benz Research and Development North America, Central Glass, a major battery electrolyte supplier, and Sidus, a battery manufacturer, to create a new next-generation battery development ecosystem.

Moving forward, the IBM team has also implemented an artificial intelligence (AI) technique called semantic enrichment to further improve battery performance by identifying safer and higher performance materials. Using machine learning techniques, it offers human researchers access to insights from millions of data points. 

You might also like...

BT Sport’s Live VR 360 Coverage Of Premier League Brings Fans Closer To The Action

While the merits of 8K delivery is being debated by broadcasters around the world, some are moving forward with plans to deploy the high resolution quality in creative ways that engage viewers and encourage them to interact with a live…

PTP V2.1 – New Security & Monitoring For IP Broadcast Infrastructures - Part 2

In the last article in this series, we looked at how PTP V2.1 has improved security. In this part, we investigate how robustness and monitoring is further improved to provide resilient and accurate network timing.

HDR: Part 33 - DOPs: The Less You Show, The More You Know

It’s a truism of our craft that compelling visual stories in film and TV are communicated in the subtext of scenes, that is to say, what we exclude from the Frame is almost always more important to the storytelling t…

PTP V2.1 – New Security & Monitoring For IP Broadcast Infrastructures - Part 1

Timing accuracy has been a fundamental component of broadcast infrastructures for as long as we’ve transmitted television pictures and sound. The time invariant nature of frame sampling still requires us to provide timing references with sub microsecond accuracy.

EU-Funded Group Looking To Productize 5G For Broadcast Production And Distribution

For the past year an international group of technology companies, funded by the European Union (EU), has been looking into the use of 5G technology to streamline live and studio production in the hopes of distributing more content to (and…