Essential Guide:  Video Over IP - Making It Work

August 16th 2018 - 11:00 AM
by Tony Orme, Technology Editor at The Broadcast Bridge

Low latency networks and non-blocking switches are terms now appearing in mainstream broadcasting. But what do they mean? Why are they relevant? And how do we make Video over IP work?

ST2110 has succeeded in abstracting away the video, audio, and metadata essence from the underlying transport stream. In doing so, we’ve had to build a new timing reference and implement the IEEE-1588:2008 protocol. Otherwise known as PTP (Precision Time Protocol), this packet switched protocol presents us with new and interesting challenges never experienced in broadcasting before.

The need to employ non-blocking Ethernet switches has come as a surprise to many broadcast engineers. X-Y matrix SDI switchers are at the heart of every broadcast operation and their non-blocking characteristics have been assumed and taken for granted. Simply replacing an SDI router with an Ethernet switch will not deliver the gains CEO’s are expecting.

To help readers understand the new emerging technology, The Broadcast Bridge Technology Editor, Tony Orme, has written this Essential Guide, Video Over IP – Making it Work. You will learn about video over IP at a deep engineering level to help you understand the key components required to make a successful IP infrastructure deliver the COTS benefits CEO’s are demanding.

Readers will also learn about PTP and its application in layer-2 networks, how switches process PTP data, and the information needed to design an IP network. Jitter and latency are key considerations and this tutorial covers the common sources of packet jitter and their remedies.

Learn about the underlying principles of Video Over IP and how you can deliver the COTS efficiencies your CEO demands. Read the tutorial, Video Over IP – Making it Work.

Part of a series supported by

You might also like...

Navigating A Way Forward, Remotely

The concept of working from home was trending long before public health issues caused most of us to contribute remotely, but the past year has seen an acceleration no one could have predicted. What those in the media industry quickly…

Practical High Dynamic Range (HDR) Broadcast Workflows - Part 2

There is a school of thought that suggests increasing the brightness through the contrast control on a television will give a higher dynamic range. However, this doesn’t necessarily increase the contrast ratio. Quantization noise is the enemy of dynamic r…

European Super League Debacle Heralds Change For Sports Broadcasting

The dramatic volcanic eruption of the European Super League (ESL) may have been short lived but the ash spewed out will disrupt the field of sports broadcasting for much longer and likely accelerate change towards a new order.

CableLabs Certifies First Low Latency DOCSIS Modem

CableLabs, the industry body responsible for cable TV R&D and standards development, has certified the first cable modem supporting the low latency version of the DOCSIS data over cable specification.

Practical High Dynamic Range (HDR) Broadcast Workflows - Part 1

HDR is taking the broadcasting world by storm. The combination of a greater dynamic range and wider color gamut is delivering images that truly bring the immersive experience to home viewers. Vibrant colors and detailed specular highlights build a kind…