Essential Guide:  Video Over IP - Making It Work

August 16th 2018 - 11:00 AM
by Tony Orme, Technology Editor at The Broadcast Bridge

Low latency networks and non-blocking switches are terms now appearing in mainstream broadcasting. But what do they mean? Why are they relevant? And how do we make Video over IP work?

ST2110 has succeeded in abstracting away the video, audio, and metadata essence from the underlying transport stream. In doing so, we’ve had to build a new timing reference and implement the IEEE-1588:2008 protocol. Otherwise known as PTP (Precision Time Protocol), this packet switched protocol presents us with new and interesting challenges never experienced in broadcasting before.

The need to employ non-blocking Ethernet switches has come as a surprise to many broadcast engineers. X-Y matrix SDI switchers are at the heart of every broadcast operation and their non-blocking characteristics have been assumed and taken for granted. Simply replacing an SDI router with an Ethernet switch will not deliver the gains CEO’s are expecting.

To help readers understand the new emerging technology, The Broadcast Bridge Technology Editor, Tony Orme, has written this Essential Guide, Video Over IP – Making it Work. You will learn about video over IP at a deep engineering level to help you understand the key components required to make a successful IP infrastructure deliver the COTS benefits CEO’s are demanding.

Readers will also learn about PTP and its application in layer-2 networks, how switches process PTP data, and the information needed to design an IP network. Jitter and latency are key considerations and this tutorial covers the common sources of packet jitter and their remedies.

Learn about the underlying principles of Video Over IP and how you can deliver the COTS efficiencies your CEO demands. Read the tutorial, Video Over IP – Making it Work.

Part of a series supported by

You might also like...

Future Technologies: Timing Asynchronous Infrastructures

We continue our series considering technologies of the near future and how they might transform how we think about broadcast, with a technical discussion of why future IP infrastructures may well take a more fluid approach to timing planes.

Standards: Part 13 - Exploring MPEG4-Part 10 - H.264/AVC

The H.264/AVC codec has been very successful. Here we dig deeper into how profiles and levels work to facilitate deployment of delivery systems and receiving client-player designs.

The Meaning Of Metadata

Metadata is increasingly used to automate media management, from creation and acquisition to increasingly granular delivery channels and everything in-between. There’s nothing much new about metadata—it predated digital media by decades—but it is poised to become pivotal in …

Designing IP Broadcast Systems: Remote Control

Why mixing video and audio UDP/IP streams alongside time sensitive TCP/IP flows can cause many challenges for remote control applications such as a camera OCP, as the switches may be configured to prioritize the UDP feeds, or vice…

Future Technologies: Autoscaling Infrastructures

We continue our series considering technologies of the near future and how they might transform how we think about broadcast, with a discussion of the concepts, possibilities and constraints of autoscaling IP based infrastructures.