Field Report: 8K UHDTV Takes Big Step in Tokyo

Japanese broadcasters are preparing for the 2020 Tokyo Olympic Games, including getting ready for 8K UHDTV. In 2018, public broadcaster NHK will roll out the needed ISDB-S3 standard. The multichannel R&S SLG signal generator from Rohde & Schwarz was used for the 8K satellite tests.

Rohde & Schwarz and SiTune have successfully tested the new Japanese 8K ultra-high-definition ISDB-S3 standard. The R&S SLG satellite load generator from Rohde & Schwarz generated the ISDB-S3 test signals.

The R&S SLG simultaneously generates up to 32 satellite transponders in real time. The extremely compact 1 RU device is the first signal generator with this capability. The R&S SLG can be operated from 250 MHz to 3225 MHz with a 500 MHz modulation bandwidth.

SiTune successfully tested its tuners for 8K Ultra High-Definition satellite TV in line with the ISDB-S3 standard provided by the R&S SLG. SiTune Corporation manufacturers RF and mixed signal semiconductors, silicon tuners enabling triple-play, satellite and terrestrial / cable receivers.

In the interoperability test, the SiTune STN6528 tuner successfully received and demodulated the ISDB-S3 signal. SiTune already introduced the world's first ISDB-S3 tuner in January 2016. By the second quarter of 2018, the manufacturer will start mass production of the tuner, which supports satellite, terrestrial and cable reception. The SiTune STN6528 tuner was operated as a plug-in board on an SC1501 demodulator evaluation board from Socionext

Users can choose from multiple transmission standards, including DVB-S, DSNG, DVB-S2, DVB-S2 wideband, DVB-S2X (also with channel bonding), ISDB-S and ISDB-S3. Several R&S SLG generators can be cascaded to generate signals for the entire satellite IF band. In multicarrier operation, the R&S SLG generates up to 32 transponder signals and transmits the content of transport streams that are fed into the instrument via an ASI, Gigabit Ethernet or optical SFP+ interface via IP.

The R&S SLG is designed for developing and testing set-top boxes and tuners in the consumer equipment industry as well as for testing professional satellite terminals, terrestrial satellite station receivers and components, and for satellite payloads in the aerospace and defense industry. Satellite operators use the R&S SLG to simulate transponders and for tests to optimize transmissions.

You might also like...

Essential Guide: Delivering Intelligent Multicast Networks

This Essential Guide discusses the potential weaknesses of the ‘Protocol-Independent Multicast’ protocols that underpin multicast, and explores how a bandwidth aware infrastructure can maximize network capacity to reduce the risk of congestion.

Standards: Part 16 - About MP3 Audio Coding & ID3 Metadata

The MP3 audio format has been around for thirty years and has been superseded by several other codecs – so here we discuss why it still has a very strong position in broadcast. We also discuss ID3 metadata tags which often a…

HDR Picture Fundamentals: Brightness

This article describes one of the fundamental principles of broadcast - how humans perceive light, how this relates to the technology we use to capture and display images, and how this relates to HDR & Wide Color Gamut

Virtualization - Part 2

In part one, we saw how virtualization is nothing new and that we rely on it to understand and interact with the world. In this second part, we will see how new developments like the cloud and Video Over IP…

Standards: Part 15 - ST2110-2x - Video Coding Standards For Video Transport

SMPTE 2110 and its related standards help to construct workflows and broadcast systems. They coexist with standards from other organizations and incorporate them where necessary. In an earlier article we looked at the ST 2110 standard as a whole. This time we…