IP connectivity delivers flexibility and scalability but making the theory work often requires integrated solutions that are adaptable, open, and promote interconnectivity.
The venerable field of audio/visual (AV) packaging is undergoing a renaissance in the streaming age, driven by convergence between broadcast and broadband, demand for greater flexibility, and delivery in multiple versions over wider geographical areas requiring different languages and varying rights.
Information theory can also be applied to loudspeakers, which are among the most difficult of transducers to design. Measuring the information capacity of loudspeakers is a useful tool.
In the previous article in this series, we looked at layer-2 switching and layer-3 routing. In this article, we look at Software Defined Networks and why they are so appealing to broadcasters.
Here we look at some practical results of transform theory that show up in a large number of audio and visual applications.
Machine learning is often compared to the human brain. But what do they really have in common?
As parts 1 and 2 of this article highlighted, there are very practical steps available today for Streamers to reach broadcast-grade latency. Low latency protocols from HLS and DASH that implement CMAF Low Latency Chunking are the main proponents of 5-8 seconds of latency from encoder input to player output. But the pull system of streaming creates an opportunity to reach a new 1-second standard, perhaps that we can call “streaming-grade”.
In the last article in this series, we looked at SDP files and the importance they play in identifying source and destination devices. In this article, we look at why we combine layer-2 switching and layer-3 routing, and why broadcasters are moving towards Software Defined Networking (SDN).