Video Dropouts and the Challenges they Pose to Video Quality Assessment

The media industry is rapidly adopting file-based workflows in all stages of the content lifecycle including transcoding, repurposing, delivery, etc. Additional complexities could be introduced during media transformations, which if not handled properly, could lead to issues in video perceived by the end consumer.The issues are due to errors caused by media capturing devices, encoding/transcoding devices, editing operations, pre- or post-processing operations, etc. A significant majority of video issues nowadays are due to the loss or alteration in coded or uncoded video information, resulting in the distortion of the spatial and/or temporal characteristics of the video. These distortions in turn manifest themselves as video artefacts, termed hereafter as video dropouts. Detection of such video quality (VQ) issues in the form of dropouts are gaining importance in the workflow quality checking and monitoring space, where the goal is to ensure content integrity, conformance to encoding standards, meta-data fields and most importantly, the perceived quality of the video that is ultimately delivered. This end video quality can certainly be measured and verified using manual checking processes, as was traditionally the case. However, such manual monitoring can be tedious, inconsistent, subjective, and difficult to scale in a media farm.

Automated video quality detection methods are gaining traction……..

This paper discusses various kinds of video dropouts, the source of these errors, and the challenges encountered in detection of these errors.

While adoption of file-based workflows provided more flexibility with the basic paradigm of file processing, it has also added complexities during media transformations. Improper handling of these complexities can lead to perceived video quality issues for the end consumer. The issues are due to errors caused by media capturing devices, encoding/transcoding devices, editing operations, pre- or post-processing operations, etc. A significant majority of video issues nowadays are due to the loss or alteration in coded or uncoded video information, resulting in the distortion of the spatial and/or temporal characteristics of the video. These distortions in turn manifest themselves as video artefacts, termed hereafter as video dropouts. Detection of such video quality (VQ) issues in the form of dropouts are gaining importance in the workflow quality checking and monitoring space, where the goal is to ensure content integrity, conformance to encoding standards, meta-data fields and most importantly, the perceived quality of the video that is ultimately delivered. This end video quality can certainly be measured and verified using manual checking processes, as was traditionally the case. However, such manual monitoring can be tedious, inconsistent, subjective, and difficult to scale in a media farm.

Automated video quality detection methods are gaining traction over manual inspection as these are more accurate, offer greater consistency, have the ability to handle large amount of video data without loss of accuracy and moreover, can be upgraded easily with changing parameters and standardizations. However, automatic detection of video dropouts is complex and a subject of ongoing research. The source where the artefacts are introduced has a bearing on the way the artefact manifests itself. Automatic detection of the variety of manifestations of video dropouts requires complex algorithmic techniques and is at the heart of a “good QC tool”. This paper discusses various kinds of video dropouts, the source of these errors, and the challenges encountered in detection of these errors.

You might also like...

Video Quality: Part 1 - Video Quality Faces New Challenges In Generative AI Era

In this first in a new series about Video Quality, we look at how the continuing proliferation of User Generated Content has brought new challenges for video quality assurance, with AI in turn helping address some of them. But new…

Wi-Fi Gets Wider With Wi-Fi 7

The last 56k dialup modem I bought in 1998 cost more than double the price of a 28k modem, and the double bandwidth was worth the extra money. New Wi-Fi 7 devices are similarly premium-priced because early adaptation of leading-edge new technology…

NAB Show 2024 BEIT Sessions Part 2: New Broadcast Technologies

The most tightly focused and fresh technical information for TV engineers at the NAB Show will be analyzed, discussed, and explained during the four days of BEIT sessions. It’s the best opportunity on Earth to learn from and question i…

Chris Brown Discusses The Themes Of The 2024 NAB Show

The Broadcast Bridge sat down with Chris Brown, executive vice president and managing director, NAB Global Connections and Events to discuss this year’s gathering April 13-17 (show floor open April 14-17) and how the industry looks to the show e…

NAB Show 2024 BEIT Sessions Part 1: ATSC 3.0 And TV RF

A full-time chief engineer in good relationships with manufacturer reps and an honest local dealer should spend most of their NAB Show time immersed in BEIT sessions. It’s an incredible opportunity to learn from and personally question indisputable industry e…