Video Dropouts and the Challenges they Pose to Video Quality Assessment

The media industry is rapidly adopting file-based workflows in all stages of the content lifecycle including transcoding, repurposing, delivery, etc. Additional complexities could be introduced during media transformations, which if not handled properly, could lead to issues in video perceived by the end consumer.The issues are due to errors caused by media capturing devices, encoding/transcoding devices, editing operations, pre- or post-processing operations, etc. A significant majority of video issues nowadays are due to the loss or alteration in coded or uncoded video information, resulting in the distortion of the spatial and/or temporal characteristics of the video. These distortions in turn manifest themselves as video artefacts, termed hereafter as video dropouts. Detection of such video quality (VQ) issues in the form of dropouts are gaining importance in the workflow quality checking and monitoring space, where the goal is to ensure content integrity, conformance to encoding standards, meta-data fields and most importantly, the perceived quality of the video that is ultimately delivered. This end video quality can certainly be measured and verified using manual checking processes, as was traditionally the case. However, such manual monitoring can be tedious, inconsistent, subjective, and difficult to scale in a media farm.

Automated video quality detection methods are gaining traction……..

This paper discusses various kinds of video dropouts, the source of these errors, and the challenges encountered in detection of these errors.

While adoption of file-based workflows provided more flexibility with the basic paradigm of file processing, it has also added complexities during media transformations. Improper handling of these complexities can lead to perceived video quality issues for the end consumer. The issues are due to errors caused by media capturing devices, encoding/transcoding devices, editing operations, pre- or post-processing operations, etc. A significant majority of video issues nowadays are due to the loss or alteration in coded or uncoded video information, resulting in the distortion of the spatial and/or temporal characteristics of the video. These distortions in turn manifest themselves as video artefacts, termed hereafter as video dropouts. Detection of such video quality (VQ) issues in the form of dropouts are gaining importance in the workflow quality checking and monitoring space, where the goal is to ensure content integrity, conformance to encoding standards, meta-data fields and most importantly, the perceived quality of the video that is ultimately delivered. This end video quality can certainly be measured and verified using manual checking processes, as was traditionally the case. However, such manual monitoring can be tedious, inconsistent, subjective, and difficult to scale in a media farm.

Automated video quality detection methods are gaining traction over manual inspection as these are more accurate, offer greater consistency, have the ability to handle large amount of video data without loss of accuracy and moreover, can be upgraded easily with changing parameters and standardizations. However, automatic detection of video dropouts is complex and a subject of ongoing research. The source where the artefacts are introduced has a bearing on the way the artefact manifests itself. Automatic detection of the variety of manifestations of video dropouts requires complex algorithmic techniques and is at the heart of a “good QC tool”. This paper discusses various kinds of video dropouts, the source of these errors, and the challenges encountered in detection of these errors.

You might also like...

Data Recording: Reed-Solomon Error Correcting Codes - Part 21

The explosion in digital technology that led to Compact Discs, DVD, personal computers, digital cameras, the Internet and digital television broadcasting relies heavily on a small number of enabling technologies, one of which is the use of Reed-Solomon error correcting…

Digital Audio - Part 1

It seems almost superfluous today to specify that audio is digital because most audio capture, production and distribution today is done numerically. This was not always the case and at one time audio was primarily done without the help of…

Creative Analysis - Part 2 - Penny Dreadful From The Cinematographer

For anyone who’s seen the first series to bear the title, the name Penny Dreadful will conjure up images of occult happenings in a shadowy, late-Victorian world. After twenty-seven episodes across three highly successful seasons, Showtime aired the last e…

Audio Levels - Part 5

There is level and then there is loudness. Neither can be measured absolutely, but by adopting standardized approaches it is possible to have measurements that are useful.

Data Recording: Burst Errors - Part 20

The first burst error correcting code was the Fire Code, which was once widely used on hard disk drives. Here we look at how it works and how it was used.