Bridge Technologies Develop Unique PTS-PCR Checks And Alarms

Building upon their market-leading understanding of IP broadcast, packet behaviour and timing, Bridge Technologies announce the development of two new PTS/PCR time checks, which will provide even more in-depth analysis of misalignment and timing slippage, and allow for detection of hard-to-identify buffer timing issues, which – under traditional PTS/PCR comparison checks included in as part of the standard TR 101 290 checks – might previously have been missed. These checks will be available as part of the new version 6.2 upgrade, available for all Bridge Technologies’ probes, include their flagship VB330 IP monitoring probe.

Whilst IP-based broadcast delivers innumerable benefits in terms of audio-visual delivery, the complexity of timing issues associated with IP can cause issues in terms of sync, not only between audio and video, but also additional elements such as subtitles. These individual assets generally maintain their own PTS (Presentation timestamp) within each stream, which can then be referenced against the PCR (Program Clock Reference) to ensure alignment. Whilst clock slippage necessarily constitutes a part of most major IP monitoring systems by virtue of the mandatory PTS Repetition check that forms part of the ETSI TR 101 290 specification, its analysis generally only goes as far as indicating presence of slippage. As such, it lacks diagnostic or predictive power. In SFN-based terrestrial networks or in head-end satellite ingest systems particularly, conventional clock slippage monitoring methods may often prove insufficient.

The two new standards, developed by Bridge, aim to address this issue. Through a more sophisticated understanding of difference values and their interactions and patterns, alarm trigger thresholds can be configured to identify and alert engineers to time slippage skew in much harder-to-detect contexts (including subtitling), and thus predict eventual errors far more promptly and accurately.

Bridge Technologies will be demonstrating the potential of these two new clock checks and associated alarms at the upcoming NAB2024 show in Las Vegas. 

You might also like...

Why AI Won’t Roll Out In Broadcasting As Quickly As You’d Think

We’ve all witnessed its phenomenal growth recently. The question is: how do we manage the process of adopting and adjusting to AI in the broadcasting industry? This article is more about our approach than specific examples of AI integration;…

Designing IP Broadcast Systems: Integrating Cloud Infrastructure

Connecting on-prem broadcast infrastructures to the public cloud leads to a hybrid system which requires reliable secure high value media exchange and delivery.

Video Quality: Part 1 - Video Quality Faces New Challenges In Generative AI Era

In this first in a new series about Video Quality, we look at how the continuing proliferation of User Generated Content has brought new challenges for video quality assurance, with AI in turn helping address some of them. But new…

Minimizing OTT Churn Rates Through Viewer Engagement

A D2C streaming service requires an understanding of satisfaction with the service – the quality of it, the ease of use, the style of use – which requires the right technology and a focused information-gathering approach.

Designing IP Broadcast Systems: Where Broadcast Meets IT

Broadcast and IT engineers have historically approached their professions from two different places, but as technology is more reliable, they are moving closer.