LiveU Continues To Drive Innovation In Dynamic 5G Network Slicing Trial

Leading industry partners collaborate to push forward 5G dynamic slicing for live content contribution.

In a first of its kind demonstration, leading 5G partners have joined forces to trial live video using single and bonded modems. These were transmitted over 5G slices that were automatically and dynamically set-up according to real-time analysis. The partners involved were LiveU, L.M. Ericsson, Nokia, and the University of Patras (UoP), under the Horizon Europe 5G-Solution project (grant # 856691).

One of the most promising mechanisms in 5G Stand-Alone (SA) networks is “slices”. In essence, this is the ability to provide as high performance as possible, or QoS, to authorized users, end-to-end within the cellular radio and Core network. This means that QoS-centric applications, such as live uplink video transmission for event coverage – from news to sport and beyond – have a higher probability of receiving the needed QoS for ultimate signal stability on location. But how can these slices be allocated and managed and how can the 5G cellular operator provide the QoS level it guarantees to multiple broadcasters over a specific slice in a certain location?

In this trial, transmitting over 5G slices that were automatically set-up according to real-time analysis was achieved using several LiveU multi-cam LU800 field units and a network management process called Zero-Touch-Automation (ZTA). Each unit transmitted up to four independent camera feeds simultaneously by bonding multiple modems, networks or slices. One of which was a slice specially configured for broadcasters’ uplink video contribution. The ZTA mechanism dynamically allocated in real-time 5G slices according to LiveU units’ transmission needs and the network overall load.

The ZTA mechanism, specially designed by Ericsson, identified in real-time changes in the network performance resulting from the increased upload demand. It then notified the network management orchestrator (CDSO, by Nokia), which drove the reconfiguration of the network (deployed by UoP) by setting-up a special upload-oriented slice. Modems in the LiveU units automatically identified the newly available special slice, started using it, and LiveU bonding algorithms began transmitting live video packets using this dedicated slice. Bonding this slice with the “best-effort” slices or commercial networks allowed each of the LU800s to transmit four video streams concurrently and at a high quality, with stable bandwidth and latency. Bonding special slices, in real-time, with other modems, networks and bandwidths was instrumental in maintaining video continuity and overall QoS throughout and to reduce the spectrum needed from the new slice.

This trial further demonstrated that even with adaptive ZTA of dedicated “guaranteed performance” slice allocation, bonding transparently and agnostically multiple modems, networks and slices is needed so that broadcasters can enjoy the highest level of video quality and reliability in these congested areas, under changing conditions and over any network configuration.

You might also like...

An Introduction To Network Observability

The more complex and intricate IP networks and cloud infrastructures become, the greater the potential for unwelcome dynamics in the system, and the greater the need for rich, reliable, real-time data about performance and error rates.

2024 BEITC Update: ATSC 3.0 Broadcast Positioning Systems

Move over, WWV and GPS. New information about Broadcast Positioning Systems presented at BEITC 2024 provides insight into work on a crucial, common view OTA, highly precision, public time reference that ATSC 3.0 broadcasters can easily provide.

Next-Gen 5G Contribution: Part 2 - MEC & The Disruptive Potential Of 5G

The migration of the core network functionality of 5G to virtualized or cloud-native infrastructure opens up new capabilities like MEC which have the potential to disrupt current approaches to remote production contribution networks.

Designing IP Broadcast Systems: Addressing & Packet Delivery

How layer-3 and layer-2 addresses work together to deliver data link layer packets and frames across networks to improve efficiency and reduce congestion.

Next-Gen 5G Contribution: Part 1 - The Technology Of 5G

5G is a collection of standards that encompass a wide array of different use cases, across the entire spectrum of consumer and commercial users. Here we discuss the aspects of it that apply to live video contribution in broadcast production.