MPEG Endorses Video Coding For Machines Movement

MPEG is responding to growing demand for efficient video transmission among machines by re-establishing a dedicated group to investigate use cases, requirements, test conditions, evaluation methodologies, and potential coding technologies.

Called the Video Coding for Machines (VCM) Ad-hoc Group (AhG), the initial focus will be mainly compression efficiency, taking account of the fact that ability to recognize objects quickly and accurately is the goal, rather than enjoyment of the experience. The aim is therefore to seek compression performance greater than that achieved by current or forthcoming codecs for transmission of content to humans, such as Versatile Video Coding (VVC).

This comes when Cisco among others have been predicting that machine-to-machine applications will generate the fastest growth in internet video traffic over the next few years. This means that efficient compression of video data for machine use will be important for competitiveness and also for ensuring there is sufficient capacity for all applications and services, including those streaming to humans.

While the aim with conventional video coding is to compress and then reconstruct whole frames with a view to achieving the most enjoyable perception possible at the target resolution, for machines it is to preserve just critical information. But machines will vary in their requirements and so the focus of research now is to apply AI techniques to adapt compression for specific use cases, with the advantage being that success is somewhat easier to define via testing, or at any rate more direct to establish in the machine case. If the machine can perform its allotted tasks accurately enough, then video will be deemed to have been reconstructed satisfactorily. The objective would be to achieve the lowest bit rate at which performance or safety targets are met, presumably leaving some headroom.

The idea of a new codec called VCM was proposed earlier in August 2019 by China Telecom in conjunction with Gyrfalcon Technology, a developer of AI accelerators. The need had just been recognized after over 40 years of video compression history led by MPEG. The stated aim was to develop vision chips for a variety of sectors in the burgeoning Internet of Things (IoT) arena.

You might also like...

The Business Cost Of Poor Streaming Quality

Poor quality streaming loses viewers at an alarming rate especially when we consider the unintended consequences of poor error reporting on streaming players.

Future Technologies: Asynchronous Transport

In this first in a series of articles considering technologies of the near future and how they might transform how we think about broadcast, we begin with the potential for asynchronous transport streams.

Next-Gen 5G Contribution: Part 1 - The Technology Of 5G

5G is a collection of standards that encompass a wide array of different use cases, across the entire spectrum of consumer and commercial users. Here we discuss the aspects of it that apply to live video contribution in broadcast production.

Why AI Won’t Roll Out In Broadcasting As Quickly As You’d Think

We’ve all witnessed its phenomenal growth recently. The question is: how do we manage the process of adopting and adjusting to AI in the broadcasting industry? This article is more about our approach than specific examples of AI integration;…

Designing IP Broadcast Systems: Integrating Cloud Infrastructure

Connecting on-prem broadcast infrastructures to the public cloud leads to a hybrid system which requires reliable secure high value media exchange and delivery.