How 24 AWG, 26 AWG and 28 AWG Network Cables Differ

When purchasing Cat5e, Cat6 or Cat6a network cables, buyers may notice an AWG specification printed on the cable jacket. AWG is a standardized system for describing the diameter of the individual conductors that make up a cable. But what does wire gauge mean?

Markertek, a broadcast supply specialist who sells network cables, addressed the issue in a recent article to help customers choose the right cable for the application. To begin, AWG stands for American Wire Gauge. To understand the differences between similar network cables with different AWG sizes, it is helpful to look at what wire gauge means.

The first thing to learn about wire gauge, said Markertek, is its inverse relationship to wire diameter. The smaller the gauge, the larger the diameter of the wire. The larger the diameter of a wire, the less electrical resistance there is for the signals it carries.

Copper network cables with a smaller gauge (larger diameter) are typically available in longer lengths because they offer less resistance, allowing signals to travel farther. Less resistance also generates less heat. A 24 AWG network cable will offer less resistance than a 26 AWG or 28 AWG network cable.

There are thin versions of Cat5e, Cat6 and Cat6a cables. Commonly constructed of 28 AWG wire, these slim Ethernet cables can be more than 25 percent smaller in diameter than their full-size counterparts. The copper conductors have a higher AWG size (a larger gauge means thinner wire), reducing the overall outside diameter of the cable.

The thinner conductors may limit the length of slim cables and make them more prone to damage, but the smaller cable OD can provide some benefits, such as improved airflow in high-density racks, improved visibility of port labels on patch panels and other network equipment, easier installation in crowded racks and simpler routing of cables around corners and through cable managers.

Although the gauge of the conductors affects the diameter of an Ethernet cable, the thickness of the cable’s insulation and jacket contribute to its size. There are also other factors to consider when choosing a network cable.

The category of cable (Cat5e, Cat6 or Cat6a) needed depends on the connection speed of the network. An application may also require a shielded cable, a cable rated for outdoor installation or a cable that meets specific building codes.

Let us know what you think…

Log-in or Register for free to post comments…

You might also like...

2018 NAB Show Highlights Complex State of the Industry

Following numerous private conversations and panel discussions at the recent 2018 NAB Show, it’s become clear that broadcasters are being challenged like never before to hold the line on CapEx spending while delivering more content across their linear platforms. Because o…

Loudspeaker Technology Part 14: Cables - Behind the Myths and Magic

John Watkinson puts on his snake-oil-proof clothing and looks at speaker cables. Finally, some clarity behind the myths and magic that surround technical aspects of speaker interconnections.

Applied Technology: Maximizing 12G Digital Patching System Performance

Broadcasters have a flurry of changing parameters and imperfections to avoid when making the transition to single-link 12Gb/s connectivity. This article will provide some guidance to the needed decisions and key performance factors.

Applied Technology:  Coaxial Cable Improvements for 4K Transport

As higher resolutions become the “norm” in television production and broadcasting, improvements in coaxial cables and associated connectors to enhance performance in the 12G operating range provides a more practical solution for 4K transport.

Articles You May Have Missed – November 29, 2017

SMPTE defines a set of stringent requirements for return loss, which have been challenging for many hardware designers even at today’s speed of 2.97 Gbps. As the industry upgrades to 5.94 Gbps and 11.88 Gbps to support ultra-HD video resolutions, meeting return l…