How 24 AWG, 26 AWG and 28 AWG Network Cables Differ

When purchasing Cat5e, Cat6 or Cat6a network cables, buyers may notice an AWG specification printed on the cable jacket. AWG is a standardized system for describing the diameter of the individual conductors that make up a cable. But what does wire gauge mean?

Markertek, a broadcast supply specialist who sells network cables, addressed the issue in a recent article to help customers choose the right cable for the application. To begin, AWG stands for American Wire Gauge. To understand the differences between similar network cables with different AWG sizes, it is helpful to look at what wire gauge means.

The first thing to learn about wire gauge, is its inverse relationship to wire diameter. The smaller the gauge, the larger the diameter of the wire. The larger the diameter of a wire, the less electrical resistance there is for the signals it carries.

Copper network cables with a smaller gauge (larger diameter) are typically available in longer lengths because they offer less resistance, allowing signals to travel farther. Less resistance also generates less heat. A 24 AWG network cable will offer less resistance than a 26 AWG or 28 AWG network cable.

There are thin versions of Cat5e, Cat6 and Cat6a cables. Commonly constructed of 28 AWG wire, these slim Ethernet cables can be more than 25 percent smaller in diameter than their full-size counterparts. The copper conductors have a higher AWG size (a larger gauge means thinner wire), reducing the overall outside diameter of the cable.

The thinner conductors may limit the length of slim cables and make them more prone to damage, but the smaller cable OD can provide some benefits, such as improved airflow in high-density racks, improved visibility of port labels on patch panels and other network equipment, easier installation in crowded racks and simpler routing of cables around corners and through cable managers.

Although the gauge of the conductors affects the diameter of an Ethernet cable, the thickness of the cable’s insulation and jacket contribute to its size. There are also other factors to consider when choosing a network cable.

The category of cable (Cat5e, Cat6 or Cat6a) needed depends on the connection speed of the network. An application may also require a shielded cable, a cable rated for outdoor installation or a cable that meets specific building codes.

You might also like...

Delivering Intelligent Multicast Networks - Part 1

How bandwidth aware infrastructure can improve data throughput, reduce latency and reduce the risk of congestion in IP networks.

NDI For Broadcast: Part 1 – What Is NDI?

This is the first of a series of three articles which examine and discuss NDI and its place in broadcast infrastructure.

Brazil Adopts ATSC 3.0 For NextGen TV Physical Layer

The decision by Brazil’s SBTVD Forum to recommend ATSC 3.0 as the physical layer of its TV 3.0 standard after field testing is a particular blow to Japan’s ISDB-T, because that was the incumbent digital terrestrial platform in the country. C…

Designing IP Broadcast Systems: System Monitoring

Monitoring is at the core of any broadcast facility, but as IP continues to play a more important role, the need to progress beyond video and audio signal monitoring is becoming increasingly important.

Broadcasting Innovations At Paris 2024 Olympic Games

France Télévisions was the standout video service performer at the 2024 Paris Summer Olympics, with a collection of technical deployments that secured the EBU’s Excellence in Media Award for innovations enabled by application of cloud-based IP production.