Training neural networks is one of the most import aspects of ML, but what exactly do we mean by this?
The more digital TV technology advances, the more the fundamental elements of TV remain the same.
One cannot get very far with electricity without the topic of batteries arising. Broadcasters in particular have become heavily dependent on batteries to power portable equipment such as cameras and lights.
For over two decades Telestream has streamlined the ingest, production, and distribution of digital video and audio. Today, compared to its SDI/AES-based predecessors, IP video adds exciting new challenges to these workflows.
IP connectivity delivers flexibility and scalability but making the theory work often requires integrated solutions that are adaptable, open, and promote interconnectivity.
The venerable field of audio/visual (AV) packaging is undergoing a renaissance in the streaming age, driven by convergence between broadcast and broadband, demand for greater flexibility, and delivery in multiple versions over wider geographical areas requiring different languages and varying rights.
Information theory can also be applied to loudspeakers, which are among the most difficult of transducers to design. Measuring the information capacity of loudspeakers is a useful tool.
In the previous article in this series, we looked at layer-2 switching and layer-3 routing. In this article, we look at Software Defined Networks and why they are so appealing to broadcasters.