A Simple Way To Calculate Digital Recording Times
Before we entered the world of file-based digital recording, planning storage needs for audio was simple. We’d simply buy enough audio tape to cover the recording time and then record the sound. In the world of analog, we knew a seven-inch tape reel at 7-1/2 ips lasted 33 minutes, while a 120 minute DAT tape lasted 120 minutes. Simple enough.
When we entered file-based digital audio recording, it got more complicated. The calculation of available recording time now involves three variables:
- Track count — how many concurrent audio tracks/channels are to be recorded.
- Data rate — the amount of data generated per second. Compressed formats express the data rate directly (usually in kilobits per second). Data rate for uncompressed formats is a function of sample rate, bit depth and track count.
- Storage capacity — typically expressed in GB.
There are several on-line calculators that will find the amount of storage space required given a time value, or the amount of time available with a given amount of storage space. Here is one example.
On using it, here are a few notes. Most storage medium now quote capacity in GB using SI units. Uncompressed digital audio is expressed numerically by two measurements, bit depth and sampling frequency, such as 16-bit/48 kHz. These two numbers are used to compute the data rate of uncompressed audio.
Bit depth defines the digital "word length" used to represent a given sample. Bit depth correlates to the maximum dynamic range that can be represented by the digital signal. Larger bit depths theoretically yield more dynamic range. As bit depth increases, the amount of data it represents increases exponentially.
The majority of field recording is done with 16-bit audio, therefore, each sample is represented by a digital word of 2^16 (65,536) possible values. 24-bit audio has a word length of 2^24 (16.7 million) possible values per sample.
The sampling frequency is expressed in samples per second (in Hz) and defines the number of times in a second that the analog audio signal has been measured. Sampling frequency determines the audio bandwidth, or frequency response, that can be represented by the digital signal.
Higher sampling frequencies theoretically yield wider audio bandwidth. For example, the DV25 format can sample at 48, 44.1 or 32 kHz. At its highest sample rate, each second of audio is made up of 48,000 samples.
When digital audio is compressed using some form of lossy, perceptual process such as MPEG2-Layer3 (MP3 audio), Windows Media encoding (WMA), ATRAC encoding (used in MiniDisc), AAC (MPEG-4 audio) or others, it can have a significant reduction in its data rate. Compressed audio has enabled the practical distribution of audio over the low speed data pathways.
You might also like...
Audio At IBC 2024
Great audio is fundamental to any great broadcast and professional audio remains one of the busiest areas of the show both in terms of number of exhibitors and innovative new technologies on show. IP and cloud developments seem set to…
Encoding & Transport For Remote Contribution At IBC 2024
The technology required to get high quality content from the venue to the viewer for live sports production remains an area of intense research and development, so there will be plenty of innovation and expertise in this area on the…
UHD & HDR Video Workflows At IBC 2024
As we head for Amsterdam we re-visit the key theme of technology that eases the burden of achieving effective workflows that simultaneously support multiple production and delivery video formats.
Is AI “Just A Tool”?
People often say that AI is just a tool. But it’s not. That’s a fundamental mistake and likely to be wrong by several orders of magnitude.
Production Control Room Tools At IBC 2024
The demand for ever more sophisticated production rolls on relentlessly… thankfully broadcast technology vendors will have an impressive array of systems to keep busy creative teams ahead of the curve at this year’s IBC Show.