ISDB-T a broadcast format designed to grow

While not the most wide-spread DTV standard, ISDB-T still offers many advantages.

There are multiple DTV standards, and ISDB-T remains one with a growing list of users. Japan has been the major proponent. The standard grew from research sourced in the countries’ MUSE (Multiple sub-nyquist sampling Encoding) system. Japan began terrestrial digital broadcasting, using the ISDB-T in December 2003. Many South and Latin American countries have also adopted ISDB-T variants as their digital TV standard. (See sidebar article.)

Inside ISDB-T
The acronym ISDB comes from ISDN, because both allow multiple channels of data to be transmitted (multiplexed). The ISDB standards cover four sub categories, satellite, ISDB-S terrestrial, ISDB-T, cable, ISDB-C and a 2.6 GHz band for delivery of mobile content. Each subcategory of ISDB is based on MPEG-2 or MPEG-4 standards for multiplexing a transport stream and uses MPEG-2 or H.264 for video and audio coding. The standard, supports both HD and SD delivery.

Transmission
The four main ISDB standards are different primarily in the type of modulation used. The 12 GHz band, ISDB-S, uses PSK modulation, 2.6 GHz band digital sound broadcasting (DAB) uses OFDM and ISDB-T (in the VHF and/or UHF band) uses COFDM with PSK/QAM.

ISDB-T also uses COFDM modulation with almost the same techniques as DVB-T: QPSK, 16QAM and 64QAM modulation variants; 2K and 8K number of carriers; and use of Guard Interval allowing mobile applications and single-frequency networks (SFN). The Japanese, however, introduced additional improvements to these techniques. On change was to divide the 6MHz TV channel bandwidth into thirteen (13) segments and devote one of these segments to mobile transmission.

ISDB-T also uses Time Interleaving , which improves reception under noisy, mobile and indoor conditions. Another added standard feature is Emergency Warning System (EWS) that automatically provides emergency warnings to viewers.

ISDB can also support data transmission using the internet as a return channel. A return channel supports interactive programming and electronic program guides.

With ISDB-T, it is possible to transmit one HDTV program or up to four standard definition programs plus one 1seg program (for cell phones and other portable mobile devices) in a 6MHz TV channel. The transport stream used for the HD and SD programs is MPEG-2 while for 1seg, MPEG-4 AVC is used. ISDB-T can also provide datacasting and interactive services.

Because DVB-T and ISDB-T are similar (both use the same multiple carrier COFDM modulation technique) this allows the two standards to provide mobile broadcast services and deploy single-frequency networks (SFN) in same geographical areas.

The Gates Air Maxiva M2X exciter supports multiple broadcast standards,
which may lower the TCO for the broadcaster.

Interfaces and Encryption
The ISDB specification supports multiple network interfaces. It also supports scrambling/encoding and rights protection (RMP-rights management and protection).

Now surprisingly, Hollywood demanded that any HD delivery scheme include content owner-enabled copy protection. The result is a limit on what viewers can do with HD content. He has only three options; copy once, copy free and copy never.

Other countries adopt ISDB
Brazil standardized on a slightly modified version ISDB-T, calling it ISDB-Tb or SBTVD (Sistema Brasileiro de Televisão Digital-Terrestre). Japan’s DiBEG committee incorporated the advancements made by Brazil’s -MPEG4 video codec and new middleware Ginga, renaming the standard ISDB-T International. Multiple South and Latin American countries have adopted the ISDB-T International standard.

Article sources: http://en.wikipedia.org/wiki/ISDB#Countries_and_territories_using_ISDB-T, http://dev.emcelettronica.com/digital-tv-standards-dvb-t-atsc-isdb-t

Countries implementing ISDB-T.

CountryISDB-T adoptedISDB-T service started
1JapanDecember 2003
2BrazilJune 2006December 2007
3PeruApril 2009 March 30, 2010
4ArgentinaAugust 2009 April 28, 2010
5ChileSeptember 2009
6VenezuelaOctober 2009 June 2011
7EcuadorMarch 2010
8Costa Rica May 2010 May 1, 2014
9ParaguayJune 2010August 15, 2011
10PhilippinesJune 2010
11BoliviaJuly 2010
12UruguayDecember 2010
13MaldivesApril 2014 (adopted as national standard)
14BotswanaFebruary 2013July 29, 2013
15GuatemalaMay 2013
16HondurasSeptember 2013
17Sri Lanka May 2014

Source: http://www.dibeg.org/

Table data current as of source date.

You might also like...

Video Quality: Part 2 - Streaming Video Quality Progress

We continue our mini-series about Video Quality, with a discussion of the challenges of streaming video quality. Despite vast improvements, continued proliferation in video streaming, coupled with ever rising consumer expectations, means that meeting quality demands is almost like an…

2024 BEITC Update: ATSC 3.0 Broadcast Positioning Systems

Move over, WWV and GPS. New information about Broadcast Positioning Systems presented at BEITC 2024 provides insight into work on a crucial, common view OTA, highly precision, public time reference that ATSC 3.0 broadcasters can easily provide.

Next-Gen 5G Contribution: Part 2 - MEC & The Disruptive Potential Of 5G

The migration of the core network functionality of 5G to virtualized or cloud-native infrastructure opens up new capabilities like MEC which have the potential to disrupt current approaches to remote production contribution networks.

The Streaming Tsunami: Securing Universal Service Delivery For Public Service Broadcasters (Part 3)

Like all Media companies, Public Service Broadcasters (PSBs) have three core activities to focus on: producing content, distributing content, and understanding (i.e., to monetize) content consumption. In these areas, where are the best opportunities for intra-PSB collaboration as we…

Designing IP Broadcast Systems: Addressing & Packet Delivery

How layer-3 and layer-2 addresses work together to deliver data link layer packets and frames across networks to improve efficiency and reduce congestion.