2018 NAB Show Event Channel

The #1 source of technology content in the broadcast & media industry, by the editors of The Broadcast Bridge - filtered by category.

Click here

Articles You May Have Missed

The editors at The Broadcast Bridge have been busy creating a wealth of new articles on IP and delivery. But, with technical managers’ busy schedules, it is easy to occasionally miss a new article from The Broadcast Bridge. Here is a sample of two recently published articles. Check them out.

Building IP facilities remains top-of-mind.

Building IP facilities remains top-of-mind.

Consultant Tony Orme continues his regular series on IP technology. In the most recent article, Tony examines IP timing and its place in a broadcast network. The author provides guidance on the importance of considering networks from a broadcast engineers’ point of view so they can better communicate with their IT department. This perspective will help both teams more effectively address the problems VLANs are trying to solve.

Logical separation of VLANs between ports on a physical switch. Click to enlarge.

Logical separation of VLANs between ports on a physical switch. Click to enlarge.

From the article:

VLANs work at the layer 2 level, that is Ethernet. They are similar to subnets but not the same, provide network security and improved performance.

IP has been successful in the internet and media domain as it is transport stream independent. That is, it can work with Ethernet, ISDN, ATM, serial and a whole plethora of different underlying hardware distribution networks. Video and audio streams provide a comparative analogy as they can both exist independently of SDI or computer networks.

Managed Switches Support VLAN

A single Ethernet network can have thousands of devices connected to it through the use of hubs, switches and bridges. Hubs are rarely used as they replicate all of the traffic on one port to all of the ports on the rest of the hub, causing congestion and collisions.

Switches are available in two varieties, managed and un-managed. An un-managed switch learns which devices are connected to each of its physical ports. When an IP camera wants to send video streams to a vision switcher with IP address 10.2.1.9, it first sends an address resolution protocol (ARP) query, which says “who has IP address 10.2.1.9 and send me your Ethernet address?”, as the layer 2 switcher has not yet learned which interface 10.2.1.9 is connected to, the ARP query is sent to all devices connected to the layer 2 switch.

Read the complete article here.

Progress continues toward ASTC 3.0 standardization.

Progress continues toward ASTC 3.0 standardization.

U.S. broadcasters are struggling with both a spectrum auction and the adoption of a new digital broadcast standard, ATSC 3.0. RF and studio engineer Ned Soseman provides regular updates on the process on both fronts.

In his latest article, the author details recent standard’s components approved and those yet to be developed.

ATSC 3.0.  Click to enlarge.

ATSC 3.0. Click to enlarge.

From the article:

The US-based Advanced Television Systems Committee standardized three more components of ATSC 3.0, the next-generation television system expected to transform the ability of broadcasters to deliver mobile, interactivity and higher quality content.

The Advanced Television Systems Committee (ATSC) members ratified the Link Layer Protocol and Audio and Video Watermark Emission standards to be part of the ATSC 3.0 suite of 20 standards and recommended practices. Three new Proposed Standards and two new Candidate Standards are also in progress within the technical subcommittee charged with developing and documenting ATSC 3.0.

The details

The Link Layer Protocol Standard (A/330) defines the layer between the physical layer and the network layer. The link layer transports the data from the network layer to the physical layer at the sending side and transports the data from the physical layer to the network layer at the receiving side. The ATSC Link-Layer Protocol also optimizes the proportion of useful data in the ATSC 3.0 Physical Layer, by means of efficient encapsulation and overhead reduction mechanisms for IP and MPEG-2 TS transport. Extensible “headroom” for future use is also provided.

The Audio Watermark Emission Standard (A/334) specifies the audio watermark encoding for use with systems conforming to the ATSC 3.0 family of specifications. This standard specifies the format in which the audio watermark resides in an uncompressed audio signal.

Read the complete article here.

Visit The Broadcast Bridge daily for more answers to your technology questions.

Let us know what you think…

Log-in or Register for free to post comments…

You might also like...

IP and Software-based Broadcasting Infrastructures: Fact vs. Fiction

IP’s suitability for live broadcasting is no longer debatable. It’s been proven in a variety of real-world global deployments over the past several years. Even so, there’s lingering skepticism around IP and a surprising lack of understanding.

Broadcast for IT - Part 5 - PAL Line and Frame Relationships

In this series of articles, we will explain broadcasting for IT engineers. Television is an illusion, there are no moving pictures and todays broadcast formats are heavily dependent on decisions engineers made in the 1930’s and 1940’s. In the last art…

Audio Over IP - Why It Is Essential

The impact of IP on the design of broadcast equipment and infrastructures is profound. Many broadcasters are replacing existing analog, AES3, MADI and SDI ports with a new class of interface for connecting to standard IT switch infrastructure, together with…

Robust Storage is Key to Empowering Media Workflows

The transformation of the media and entertainment workflow from discrete, server-based silos to software-based environments is well underway. As the industry makes this shift, media companies find that placing a scale-out storage solution at the heart of the IP workflow…

Loudspeaker Technology Part 14: Cables - Behind the Myths and Magic

John Watkinson puts on his snake-oil-proof clothing and looks at speaker cables. Finally, some clarity behind the myths and magic that surround technical aspects of speaker interconnections.