FUJIFILM Launches Sustainable Data Storage Initiative

Aim is to highlight how tape technology can significantly reduce electricity consumption and CO2 emissions related to data storage.

New research from IDC estimates that, globally, data centres can reduce CO2 emissions by over 43%, or 664 million metric tonnes by 2030. Fujifilm's part in that is a Sustainable Data Storage Initiative which highlights how tape technology can significantly reduce electricity consumption and CO2 emissions related to data storage.

“We’re proud to launch the Sustainable Data Storage Initiative to help spread awareness of today’s modern data tape technology as a solution to reducing CO2 emissions from data storage operations while simultaneously being very cost-effective,” said Hironobu Taketomi, President, Fujifilm Recording Media USA. “Beginning with this study, Fujifilm’s global initiative will help companies around the world make smart decisions when assessing their storage options with sustainability objectives in mind.”

A related IDC whitepaper summarises findings on how to enhance the sustainability of data storage. Following are key highlights from the paper:

  • Reporting from several major data centres found that energy consumption increased by 31% from 2017 to 2020, and the amount of data stored in data centres is expected to grow by 27% each year through to 2025.
  • Relying on renewable energy alone is not enough to keep up with rapid growth in data centres’ power consumption. Water, wind and solar power also have their own associated impacts on the environment (i.e., disposing of wind turbines and solar panels).
  • To negate this growing issue and protect the environment from further damage, IDC estimates that strategically migrating more data storage to tape can reduce CO2 emissions by 43.7%, or 664 million metric tonnes, by 2030.
  • Tape storage offers additional security benefits such as immutability, encryption features and offline “air gap” protection against cyber criminals.
  • Tape is the most cost-effective storage media on a cost per gigabyte basis, requires minimal power to operate and is reliable for storing data for periods exceeding 30 years with an excellent bit error rate.

You might also like...

Designing IP Broadcast Systems: Integrating Cloud Infrastructure

Connecting on-prem broadcast infrastructures to the public cloud leads to a hybrid system which requires reliable secure high value media exchange and delivery.

Designing IP Broadcast Systems: Where Broadcast Meets IT

Broadcast and IT engineers have historically approached their professions from two different places, but as technology is more reliable, they are moving closer.

Standards: Part 6 - About The ISO 14496 – MPEG-4 Standard

This article describes the various parts of the MPEG-4 standard and discusses how it is much more than a video codec. MPEG-4 describes a sophisticated interactive multimedia platform for deployment on digital TV and the Internet.

Chris Brown Discusses The Themes Of The 2024 NAB Show

The Broadcast Bridge sat down with Chris Brown, executive vice president and managing director, NAB Global Connections and Events to discuss this year’s gathering April 13-17 (show floor open April 14-17) and how the industry looks to the show e…

Designing IP Broadcast Systems: Part 2 - IT Philosophies, Cloud Infrastructure, & Addressing

Welcome to the second part of ‘Designing IP Broadcast Systems’ - a major 18 article exploration of the technology needed to create practical IP based broadcast production systems. Part 2 discusses the different philosophies of IT & Broadcast, the advantages and challenges…