Hiltron Introduces High-Accuracy 3D Laser Scanning Service For Teleport Antennas

Hiltron Communications is introducing a service allowing 3D laser scanning and evaluation of teleport antennas. Based on technology developed by Hiltron’s subsidiary partner, ESA Microwave GmbH, this new resource allows reflectors of practically any size to be measured quickly and accurately.

“Satellite teleports have massively expanded in number since the mid 1980s,” says Hiltron sales manager Jean-Luc George van Eeckhoutte. “Many reflectors currently in use date back to those early years and are now performing with reduced efficiency. This new service allows reflectors to be checked in very high resolution as part of a complete performance evaluation. The 3D laser scanning technique we use is far more accurate than the commonly used photogrammetry technique and can be performed while the antenna is actually in operation. It is also much more efficient than photogrammetry which requires manual attachment of measurement targets to the reflector, a time-consuming process and one which results in only a few hundred points being measured."

Hiltron's 3D laser scanning service allows a million surface reference points per second to be captured with a geometric accuracy of less than 1 mm. The resultant information is integrated into a cloud of approximately 60 million points which is then used to create a computer-aided design model.”

After digitisation and computation of the reflector and sub-reflector topography, the ingested data are used to calculate alignment, registration and any required fine-tuning such as surface restoration. Measured specifications and related performance parameters are delivered to the antenna operator or owner together with recommendations clarifying whether the antenna would benefit from upgrading, conversion or fitting with a multi-band feed system.

The 3D laser scanning service is available to new and existing Hiltron customers for any brand and model of satellite antenna up to 35 metres in diameter.

You might also like...

Designing IP Broadcast Systems: Where Broadcast Meets IT

Broadcast and IT engineers have historically approached their professions from two different places, but as technology is more reliable, they are moving closer.

Chris Brown Discusses The Themes Of The 2024 NAB Show

The Broadcast Bridge sat down with Chris Brown, executive vice president and managing director, NAB Global Connections and Events to discuss this year’s gathering April 13-17 (show floor open April 14-17) and how the industry looks to the show e…

Designing IP Broadcast Systems: Part 2 - IT Philosophies, Cloud Infrastructure, & Addressing

Welcome to the second part of ‘Designing IP Broadcast Systems’ - a major 18 article exploration of the technology needed to create practical IP based broadcast production systems. Part 2 discusses the different philosophies of IT & Broadcast, the advantages and challenges…

Essential Guide: Network Observability

This Essential Guide introduces and explores the concept of Network Observability. For any broadcast engineering team using IP networks and cloud ecosystems for live video production, it is an approach which could help combat a number of the inherent challenges…

Audio For Broadcast: Cloud Based Audio

As broadcast production begins to leverage cloud-native production systems, and re-examines how it approaches timing to achieve that potential, audio and its requirement for very low latency remains one of the key challenges.