XenData Launches X1 Archive Appliance For LTO, Cloud And Optical Disc

The X1 attaches to a network and allows file-based applications to archive to LTO external drives, Sony Optical Disc Archive (ODA) drives or cloud object storage. The appliance runs Windows 10 Pro and is powered by XenData Archive Series and FS Mirror software.

The archive appears locally as a single logical drive – the X: drive. And XenData explains that there are multiple ways to write to and restore files from it:

  • Share the X: drive over your network and write to it and restore from it like any disk-based share.
  • Use FS Mirror to synchronize one or more locally accessible file systems or file shares to the LTO archive.
  • Use FS Mirror to create archive drop-boxes on your network that automatically move files to the archive.
  • Use third party applications that integrate with XenData’s XML API.

The X1 is available in three models: for LTO external drives, ODA external drives and for cloud. Each model is based on Intel NUC hardware and includes a high-endurance 1.92 TB SSD cache for enhanced performance.

The X1 for LTO connects to an LTO external drive via Thunderbolt 3 or USB 3. And for LTO drives with SAS connections, they may be connected via a Thunderbolt to SAS converter. The appliance manages an unlimited number of LTO cartridges and up to 2 billion files. It enables file transfers that span across cartridges and, when using two or more attached LTO drives, it supports automatic cartridge replication.

The X1 for ODA supports Gen 1, 2 and 3 drives with cartridge capacities up to 5.5 TB. They connect to the X1 via USB 3. As with LTO, the X1 manages an unlimited number of cartridges and it supports file transfers that use the 1.92 TB cache to span cartridges.

The X1 model for archiving to cloud storage supports multiple clouds including AWS S3, Azure and Wasabi S3. The system may be configured to replicate files to different cloud locations and different cloud providers.

The X1 Archive Appliance is immediately available.

You might also like...

Data Recording: Error Handling II - Part 15

Errors are handled in real channels by a combination of techniques and it is the overall result that matters. This means that different media and channels can have completely different approaches to the problem, yet still deliver reliable data.

The Sponsors Perspective: Media Companies - Advance Your Security And Innovation Lifecycles

Hackers are always improving the level of sophistication and constantly finding new surface areas to attack – resulting in the surging volume and frequency of cyberattacks.

PTP Explained - Part 4 - Requirement’s For Virtualisation Of ST 2110 COTS Infrastructures

In the fourth and final part of this series, we wrap up with an explanation on how PTP is used to support SMPTE ST 2110 based services, we dive into timing constraints related to using COTS (Commercial Off-The-Shelf) hardware, i.e.:…

Data Recording: Error Handling - Part 14

In the data recording or transmission fields, any time a recovered bit is not the same as what was supplied to the channel, there has been an error. Different types of data have different tolerances to error. Any time the…

PTP Explained - Part 3 - Operational Supervision Of PTP Network Services

In the previous two parts of this four-part series, we covered the basic principles of PTP and explained how time transfer can be made highly reliable using both the inherent methods IEE1588 provides as well as various complementing redundancy technologies.…