Lithium-Ion Batteries, a Staple for Broadcasting, Wins the Nobel Prize in Chemistry 

John B. Goodenough, M. Stanley Whittingham and Akira Yoshino were jointly awarded the Nobel Prize in Chemistry for their development of lightweight lithium-ion batteries, the Royal Swedish Academy of Sciences has announced.

“Lithium-ion batteries have revolutionized our lives and are used in everything from mobile phones to laptops and electric vehicles,” the Nobel Prize committee said in a statement following the announcement. “Through their work, this year’s Chemistry laureates have laid the foundation of a wireless, fossil fuel-free society.”

Lithium-Ion Batteries have also revolutionized video, audio and a wide range of smaller tools used by broadcasters and content producers.

Whittingham, a professor at Binghamton University, State University of New York, began developing methods for fossil fuel-free energy technologies starting in the 1970s and discovered a cathode — or a type of electrical conductor through which electrons move — in a lithium battery. His discovery resulted in the first functional lithium battery.

The other two scientists developed new innovations based on that battery. 

Goodenough, a professor at the University of Texas at Austin, discovered that the cathode would have greater potential if it were made with a different material and showed that cobalt oxide with intercalated lithium ions could produce a higher voltage.

Yoshino, an honorary fellow for the Asahi Kasei Corp. in Tokyo and a professor at Meijo University in Nagoya, Japan, then eliminated pure lithium from the battery, instead using only lithium ions, which are safer. He created the first commercially viable lithium-ion battery in 1985.

Since Lithium-Ion Batteries were introduced to the market in 1991, their light weight made portable electronics a staple of modern life.

The batteries contribute to reducing the impact of climate change by enabling a switch from fossil fuel energy to renewable and sustainable forms.

“Development of these batteries is a huge step forward, so we that we can really store solar and wind energy,” said Sara Snogerup Linse, the chairwoman of the Nobel Committee for Chemistry. 

You might also like...

Designing IP Broadcast Systems: Integrating Cloud Infrastructure

Connecting on-prem broadcast infrastructures to the public cloud leads to a hybrid system which requires reliable secure high value media exchange and delivery.

Designing IP Broadcast Systems: Where Broadcast Meets IT

Broadcast and IT engineers have historically approached their professions from two different places, but as technology is more reliable, they are moving closer.

Comms In Hybrid SDI - IP - Cloud Systems - Part 2

We continue our examination of the demands placed on hybrid, distributed comms systems and the practical requirements for connectivity, transport and functionality.

Wi-Fi Gets Wider With Wi-Fi 7

The last 56k dialup modem I bought in 1998 cost more than double the price of a 28k modem, and the double bandwidth was worth the extra money. New Wi-Fi 7 devices are similarly premium-priced because early adaptation of leading-edge new technology…

NAB Show 2024 BEIT Sessions Part 2: New Broadcast Technologies

The most tightly focused and fresh technical information for TV engineers at the NAB Show will be analyzed, discussed, and explained during the four days of BEIT sessions. It’s the best opportunity on Earth to learn from and question i…