Articles You May Have Missed – November 29, 2017

SMPTE defines a set of stringent requirements for return loss, which have been challenging for many hardware designers even at today’s speed of 2.97 Gbps. As the industry upgrades to 5.94 Gbps and 11.88 Gbps to support ultra-HD video resolutions, meeting return loss will become even more challenging. How will you manage the issue? This article will help you decide on key elements like cable and connectors in that new high-bandwidth network.

In this second article, the question becomes, “Are you planning on building a 4K workflow and have you considered the issues of storage?” This tutorial provides guidance on both bandwidth and storage needs when working with high resolution files.

Return loss is a mathematical term to measure how well a device’s termination matches with its target impedance, which also indicates the amount of reflected signal. In the video world, the target impedance is 75 Ω for matching the characteristic impedance of the coaxial cable used in signal transmission. In the real world, due to the tolerance of the termination resistor and its parasitic elements (both inductance and capacitance), the termination is never perfect and varies with frequency.

When upgrading to UHD, it is not practical for optimizing external components on return loss and other SMPTE parameters, such as jitter and signal edge rates. A new class of semiconductor solutions, in combination with common high-speed board design methodology, gives system designers the ability to upgrade equipment to 11.88-Gbps UHD with confidence in meeting stringent SMPTE requirements. These new video solutions are key elements in bringing UHD live broadcasts to the consumer’s home. Read this technical bulletin on minimizing return loss: What You Need To Know About Return Loss.

Though fewer than half of media facilities had any 4K running through them at the close of last year, many are now moving toward full 4K adoption. The change to capturing 4K resolution or greater has a couple of major drivers. First, when capturing content at higher-than-delivery resolution, editors can zoom and crop 6K or 8K material for better-quality content delivered at 4K. At the same time, editing at higher resolutions and archiving both original footage and completed content makes them more valuable for future content creation and re-monetization opportunities.

By closely examining key capabilities of workflow storage, such as performance, scalability, cost and network protocol, as well as the data formats and workstation operating systems to be used, a facility can determine an optimal storage infrastructure for higher-resolution content creation, delivery and archive. Read this tutorial on high-bandwidth networking and storage, “Optimized Storage Infrastructure Enables Ongoing Rise of 4K Production.”

If you are not already registered, sign up for a free subscription to receive a daily, weekly or monthly custom email filled with content and technology that you select. Don’t wait for an out-of-date, month’s-old print version of “breaking events,” get your free membership to The Broadcast Bridge today.

With such a wealth of information generated daily, it is important to not get left behind.

Let us know what you think…

Log-in or Register for free to post comments…

You might also like...

How 24 AWG, 26 AWG and 28 AWG Network Cables Differ

When purchasing Cat5e, Cat6 or Cat6a network cables, buyers may notice an AWG specification printed on the cable jacket. AWG is a standardized system for describing the diameter of the individual conductors that make up a cable. But…

2018 NAB Show Highlights Complex State of the Industry

Following numerous private conversations and panel discussions at the recent 2018 NAB Show, it’s become clear that broadcasters are being challenged like never before to hold the line on CapEx spending while delivering more content across their linear platforms. Because o…

Loudspeaker Technology Part 14: Cables - Behind the Myths and Magic

John Watkinson puts on his snake-oil-proof clothing and looks at speaker cables. Finally, some clarity behind the myths and magic that surround technical aspects of speaker interconnections.

Applied Technology: Maximizing 12G Digital Patching System Performance

Broadcasters have a flurry of changing parameters and imperfections to avoid when making the transition to single-link 12Gb/s connectivity. This article will provide some guidance to the needed decisions and key performance factors.

Applied Technology:  Coaxial Cable Improvements for 4K Transport

As higher resolutions become the “norm” in television production and broadcasting, improvements in coaxial cables and associated connectors to enhance performance in the 12G operating range provides a more practical solution for 4K transport.